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Abstract 
 
A common goal for a statistical research project 

is to investigate causality, and in particular to draw a 
conclusion on the effect of changes in the values of 
predictors or independent variables on dependent 
variables or response, there are two major types of 
causal statistical studies; experimental studies and 
observational studies. In both types of studies, the 
effect of differences of an independent variable (or 
variables) in the behavior of the dependent variable 
are observed. The term “chi-square” refers both to a 
statistical distribution and to a hypothesis testing 
procedure that produces a statistic that is 
approximately distributed as the chi-square 
distribution. Whether analyzing null-hypothesis is or 
not by using chi-square entirely depends on the 
significant level (alpha) and sample size. Whenever 
we make a decision based on a hypothesis test, we can 
never know whether or decision is correct. There are 
two kinds of mistakes we can make: (1) we can fail to 
accept the null hypothesis when it is indeed true (Type 
I error), or (2) we can accept the null hypothesis 
when it is indeed false (Type II error). This paper 
tries to reduce the chance of making either of these 
errors by adjusting between the significant level 
(alpha) and the minimum sample size needed. 
 
1. Introduction 

 
A test is a statistical procedure to obtain a 

statement on the truth or falsity of a proposition, on 
the basis of empirical evidence. This is done within 
the context of a model, in which the fallibility or 
variability of this empirical evidence is represented by 
probability. In this model, the evidence is summarized 
in observed data, which is assumed to be the outcome 
of a stochastic, i.e., probabilistic, process; the tested 
proposition is represented as a property of the 
probability distribution of the observed data. 
 
1.1 Related Works 

 
The first published statistical test was by John 

Arbuthnot in 1710, who wondered about the fact that 
in human births, the fraction of boys born year after 
year appears to be slightly larger than the fraction of 
girls [6]. 

One of the first statistical procedures that come 
close to a test in the modern sense was proposed by 
Karl Pearson in 1900.Thiswas the famous chi-squared 

test for comparing an observed frequency distribution 
to a theoretically assumed distribution. This 
distribution can therefore be used to calculate the 
probability that, if the hypothesis holds, the test 
statistic will assume a value equal to or larger than the 
value actually observed. 
 The idea of testing was further codified and 
elaborated in the first decades of the twentieth 
century, mainly by R. A. Fisher [7].  In his 
significance tests the data are regarded as the outcome 
of a random variable X (usually a vector or matrix), 
which has a probability distribution which is a 
member of some family of distributions; the tested 
hypothesis, also called the null hypothesis and the 
significance of the given outcome of the test statistic 
is calculated as the probability. The significance 
probability is now often called the p-value (the letter p 
referring to probability). With Fisher originates the 
convention to consider a statistical testing result as 
`significant' if the significance probability is 0.05 or 
less [7]. A competing approach was proposed in 1928 
by Neyman and Egon Pearson [8]. 
 Neyman and Egon Pearson (the son of Karl) [8] 
criticized the arbitrariness in Fisher's choice of the test 
statistic and asserted that for a rational choice of test 
statistic one needs not only a null hypothesis but also 
an alternative hypothesis. They formalized the testing 
problem as a two decision problem. Denoting the null 
hypothesis by H0 and the alternative H1, the two 
decisions were represented as `reject H0' and `do not 
reject H0' Two errors are possible: rejecting a true H0, 
and failing to reject a false H0. Neyman and Pearson 
conceived of the null hypothesis as a standard 
situation, the burden of proof residing with the 
researcher to demonstrate (if possible) the untenability 
of this proposition. Correspondingly, they called the 
error of rejecting a true H0 an error of the first kind 
and the error of failing to reject a false H0 an error of 
the second kind. Errors of the first kind are considered 
more serious than errors of the second kind. The 
probability of correctly rejecting H0 If H1 is true, 
which is 1 minus the probability of an error of the 
second kind, given that the alternative hypothesis is 
true, they called the power of the test. Neyman and 
Pearson proposed the requirement that the probability 
of an error of the first kind, given that the null 
hypothesis is indeed true, do not exceed some 
threshold value called the significance level usually 
denoted by ‘alpha’. Further they proposed to 
determine the test so that, under this essential 
condition, the power will be maximal. 



 

2 
 

 In the Neyman-Pearson formulation, we obtain 
richer results at the cost of a more demanding model. 
In addition to Fisher's null hypothesis, we also need to 
specify an alternative hypothesis; and we must 
conceive the testing problem as a two-decision 
situation. This led to vehement debate between Fisher 
on the one hand, and Neyman and E. Pearson on the 
other. This debate and the different philosophical 
positions are summarized by Hacking [6] and 
Gigerenzer et al. [9], who also give a further historical 
account.  
 Examples of this hybrid character are that, in 
accordance with the Neyman-Pearson approach, the 
theory is explained by making references to both the 
null and the alternative hypotheses, and to errors of 
the first and second kind (although power tends to be 
treated in a limited and often merely theoretical way), 
whereas in the spirit of Fisher statistical tests are 
regarded as procedures to give evidence about the 
particular hypothesis tested and not merely as rules of 
behavior that will in the long run have certain 
(perhaps optimal) error rates when applied to large 
numbers of hypotheses and data sets. Lehmann [10] 
argues that indeed a unified formulation is possible, 
combining the best features of both approaches. 
 Instead of implementing the hypothesis test as a 
`reject/don't reject' decision with a predetermined 
significance level, another approach often is followed: 
to report the p-value or significance probability, 
defined as the smallest value of the significance level 
at which the observed outcome would lead to 
rejection of the null hypothesis. Equivalently, this can 
be as the probability, calculated under the null 
hypothesis, of observing a result deviating from the 
null hypothesis at least as much as actually observed 
result. This deviation is measured by the test statistic, 
and the p-value is just the tail probability of the test 
statistic. For a given significance level a, the null 
hypothesis is rejected if and only if p<=a [1]. 
 
2. Hypothesis Testing 

 
The theory of hypothesis testing is concerned 

with the problem of determining whether or not 
statistical hypothesis, that is, a statement about the 
probability distribution of the data, is consistent with 
the available sample evidence. The particular 
hypothesis to be tested is called the null hypothesis 
and is denoted by H0. The ultimate goal is to accept 
or reject H0. 

In addition to the null hypothesis H0, one may 
also be interested in a particular set of deviations from 
H0, called the alternative hypothesis and denoted by 
H1. Usually, the null and the alternative hypotheses 
are not on an equal footing: H0 is clearly specified 
and of intrinsic interest, whereas H1 serves only to 
indicate what types of departure from H0 are of 
interest. 

 
 

2.1 Types of Hypothesis 
 
The art of statistics is in finding good ways of 

formulating criteria, based on the value of one more 
statistics, to either accept or reject the null hypothesis 
H0. It should be noted that H0 and HA can be almost 
anything, and as complicated or as simple as we wish. 
If a hypothesis is stated such that it specifies the entire 
distribution, we call it a simple hypothesis. Otherwise, 
we call it a composite hypothesis. As you might 
imagine, more rigorous tests can be done with simple 
hypotheses, because they specify the entire 
distribution, from which probability values can be 
computed. 

 
There are two hypotheses that are possible: 

 
Null Hypothesis: The statement being stated in a test 
of significance is called the null hypothesis. The test 
of significance is designed to assess the strength of 
the evidence against the null hypothesis. Usually the 
null hypothesis is a statement of “no effect” or “no 
difference”. The null hypothesis is usually denoted by 
H0. 
 
Alternative Hypothesis: The statement that we 
suspect to be true. Or the statement that we wish to 
conclude. This alternative hypothesis is usually 
denoted by Ha or H1. 
 
Steps to do Hypothesis Testing: 
 
1. Formulate the Null hypothesis and Alternative 

hypothesis. 
2. Specify the level of significance (Commonly used:  

= 0:05 or 0.01). 
3. Determine the appropriate test statistic to use. 
4. Define your rejection rule (Not needed if you 

decide to use the p-value). 
5. Compute the observed value of the test statistic 

(Compute the p-value). 
6. Write your conclusion. [3] 

 
2.2 Type I and Type II errors 

 
In any testing situation, two kinds of error could 

occur: 
 

Type I (false positive): We reject the null hypothesis 
when it’s actually true. 
 
Type II (false negative): We accept the null 
hypothesis when it’s actually false. 
 

The probability of committing a Type I error is 
typically denoted α, and the probability of a Type II 
error is denoted β. 
 
α: the probability of making a Type I error (false 
positive). 
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β: the probability of making a Type II error (false 
negative). 
  

“α” is often called a significance level or 
sensitivity. Typically, we try to fix an accepted level, 
α of Type I error, and go on to find ways of 
minimizing the level of Type II error, β. 

The statistical power of a test is defined as (1 − 
β). We usually want to maximize the power of our test 
in order to detect as many significant signals from our 
data as we possibly can [2]. 

 
The Probability of the Null Hypothesis  
 

The first misinterpretation is to view a p-value as 
the probability that the results occurred because of 
sampling error or chance fluctuations. For example, 
p=0.05 is interpreted to mean that there is a 
probability of only .05 that the results were caused by 
chance. However, this interpretation is completely 
erroneous because (1) the p-value was calculated by 
assuming that the probability is 1.0 that any 
differences were the result of chance and 92) the p-
value is used to decide whether to accept or reject the 
idea that the probability is 1.0 that chance caused the 
mean difference. A p-value of .05 means that, if the 
null hypothesis is true, the odds are 1 in 20 of getting 
a mean difference this large or larger and the odds are 
19 in 20 of getting a smaller mean difference.       
However, there is no way in classical statistical 
significance testing to determine whether the null 
hypothesis is true or the probability that it is true. 
 
2.3 The Probability of Results Being 
Replicated 
 
 A second misinterpretation is that the p-value 
represents the confidence a researcher can have that a 
given result is reliable or can be replicated. Basically, 
this argument is that the complement of the p-value 
yields the probability that a result is replicable or 
reliable, eg 1-.05=.95 probability that results can be 
replicated. This misinterpretation probably comes 
from a notion that a statistically significant difference 
in sample means suggests that the samples are from 
different hypothetical populations and future samples 
drawn from these different hypothetical populations 
will therefore yield q=equivalent results. However, 
nothing in classical statistical significance testing 
says anything about the probability that the same 
results will occur in future studies. Replication results 
is a function of how exactly the method is repeated, 
and some aspects, such as the time of measurement, 
clearly cannot be identical to those of the original 
study. 
 
2.4 The Probability of Results Being Valid 
 
 The third and most serious misinterpretation of 
classical statistical significance testing is that it 

directly assesses the probability that the research 
(alternative) hypothesis is true. For example, a p-
value of .05 is interpreted to mean that its 
complement, .95, is the probability that the research 
hypothesis is true. Related to this misinterpretation is 
the practice of interpreting p-values as a measure of 
the degree of validity of research results, i.e., a p-
value such as p<.0001 is “highly statistically 
significant” or “highly significant” and therefore 
much more valid than a p-value of, say, .05. Again, 
such a practice is inappropriate. Although it is true, 
for example, that the greater the difference between 
group means the greater the chance of obtaining a 
small p-value, and it is true that such a result may be 
rarer given the null hypothesis a statistically 
significant result cannot properly be construed as a 
more valid result for at least two reasons.  
 First, a statistical test is not a complete test of a 
research hypothesis. Instead it examines only one of 
many possible operations of a research hypothesis. 
Thus, it is improper to infer that the research 
hypothesis is valid without testing and support from a 
representative sample of operations. Second, a variety 
of threats to drawing valid inferences are not 
addressed by statistical tests (Cook and Campbell 
1979). In any event, rejection of the null hypothesis at 
a predetermined p-level supports the inference that 
sampling error is an unlikely explanation of results 
but gives no direct evidence that the alternative 
hypothesis is valid. 
 
  
2.5 Sample Size and Probability of the 
Research Hypothesis 
 
 Moreover, because effect size is a measure of the 
strength of the relationship and large effects are more 
likely to be replicated than small ones, researchers 
should have more confidence in the study with the 
smaller sample. 

 
3. Parametric versus Non-parametric 
Tests 

 
In general, there are two kinds of statistical tests. 

Classical statistics mostly deals with parametric tests. 
These are tests which assume some sort of model 

for the underlying distribution. Many of the statistical 
distributions used in these tests assume that the data is 
drawn from a normal distribution. Given this 
assumption, much can be derived about the 
distribution of the observations themselves. 

Non-parametric tests do not assume any kind of 
underlying probability distribution. This can be very 
useful in cases where it would be very hard to justify 
that the data are normally-distributed (or if we know 
it’s just plain not true). Many non-parametric tests can 
quite powerful simply by considering the rank order 
of the observations [2]. 
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3.1 The Chi Square Statistic 
 
The term "chi-square" (parametric) refers both to 

a statistical distribution and to a hypothesis testing 
procedure that produces a statistic that is 
approximately distributed as the chi-square 
distribution. 

 
Populations 
 

In statistics the term "population" has a slightly 
different meaning from the one given to it in ordinary 
speech. It need not refer only to people or to animate 
creatures. Statisticians also speak of a population of 
objects, or events, or procedures, or observations. A 
population is thus an aggregate of creatures, things, 
cases and so on.  
 
Samples 
 

A population commonly contains too many 
individuals to study conveniently, so an investigation 
is often restricted to one or more samples drawn from 
it. A well chosen sample will contain most of the 
information about a particular population parameter 
but the relation between the sample and the 
population must be such as to allow true inferences to 
be made about a population from that sample.  

Consequently, the first important attribute of a 
sample is that every individual in the population from 
which it is drawn must have a known non-zero chance 
of being included in it; a natural suggestion is that 
these chances should be equal. 

To draw a satisfactory sample sometimes 
presents greater problems than to analyze statistically 
the observations made on it. Before drawing a sample 
the investigator should define the population from 
which it is to come. Sometimes he or she can 
completely enumerate its members before beginning 
analysis. 
 
Types of Data: 

 
There are basically two types of random variables 

and they yield two types of data: numerical and 
categorical. A chi square (X2) statistic is used to 
investigate whether distributions of categorical 
variables differ from one another. Basically 
categorical variable yield data in the categories and 
numerical variables yield data in numerical form. 
Numerical data can be either discrete or continuous. 
The table below may help you see the differences 
between these two variables. 

Discrete data arise from a counting process, while 
continuous data arise from a measuring process. 

The Chi Square statistic compares the tallies or 
counts of categorical responses between two (or 
more) independent groups. (Note: Chi square tests can 

only be used on actual numbers and not on 
percentages, proportions, means, etc.) 
 
2 x 2 Contingency Table 
 

Table 1. General notation for a 2 x 2 contingency 
table 

 
 Data type 1 Data type 2 Totals 

Category 1 a b a + b 

Category 2 c d c + d 

Total a + c b + d a + b + c + d = N

 
There are several types of chi square tests 

depending on the way the data was collected and the 
hypothesis being tested. We'll begin with the simplest 
case: a 2 x 2 contingency table. If we set the 2 x 2 
table to the general notation shown below in Table 1, 
using the letters a, b, c, and d to denote the contents of 
the cells, then we would have the following table: 

For a 2 x 2 contingency table the Chi Square 
statistic is calculated by the formula: 

 

2 2
    

   
( ) ( )

( )( )( )( )
ad bc a b c d

a b c d b d a c                  (Eq. 1) 
 

2 2
  ( )observed expected

expected  (Eq. 2) 
 

Calculate the chi square statistic x2 by completing 
the following steps: 
1. For each observed number in the table subtract 

the corresponding expected number (O — E).  
2. Square the difference [ (O —E)2 ].  
3. Divide the squares obtained for each cell in the 

table by the expected number for that cell [ (O - 
E)2 / E ].  

4. Sum all the values for (O - E)2 / E. This is the chi 
square statistic.  

 
Table 2. General notation for a 3 x 3 contingency 

table 
 

 Type  
I 

Type  
II 

Type 
III Row Totals 

Sample 
A a b c a+b+c 

Sample 
B d e f d+e+f 

Sample 
C g h i g+h+i 

Column 
Totals a+d+g b+e+h c+f+i a+b+c+d+e+f+g+h+i=N
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Now we need to calculate the expected values for 
each cell in the table and we can do that using the the 
row total times the column total divided by the grand 
total (N).  

 
Expected Value = (a+b+c) (a+d+g) / N (Eq. 3) 

 
Degree of Freedom 
 

When a comparison is made between one sample 
and another, a simple rule is that the degrees of 
freedom equal (number of columns minus one) x 
(number of rows minus one) not counting the totals 
for rows or columns. 

 
Degree of Freedom = (c - 1) (r - 1) (Eq. 4) 

 
Table 3. Chi Square distribution table 

probability level (alpha) 
 

Df 0.5 0.10 0.05 0.02 0.01 0.001 

1 0.455 2.706 3.841 5.412 6.635 10.827 

2 1.386 4.605 5.991 7.824 9.210 13.815 

3 2.366 6.251 7.815 9.837 11.345 16.268 

4 3.357 7.779 9.488 11.668 13.277 18.465 

5 4.351 9.236 11.070 13.388 15.086 20.517 

 
4.  Conclusion 
  

This paper tries to reduce the chance of making 
either of these errors by adjusting between the 
significant level (alpha) and the minimum sample size 
needed. 

Whether analyzing null-hypothesis is or not by 
using chi-square entirely depends on the significant 
level (alpha) and sample size. 

Several issues related to the interpretation and 
value of statistical significance tests are useful aids in 
drawing inferences and for signaling relationships 
which need further study, they are not sufficient for 

falsifying hypotheses or judging research results. 
Despite the fact that many of these ideas have been 
discussed previously, many researchers, including 
those in marketing, continue to ignore them. Attention 
should be placed on the data themselves and their 
descriptions. Instead of relying solely on classical 
inferential statistics, researchers should make added 
use of replication. 
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